Percolation in nanocomposites with complex geometries: Experimental and Monte Carlo simulation studies

نویسندگان

  • D. R. Stevens
  • L. N. Downen
  • L. I. Clarke
چکیده

The development of nanocomposites a matrix, often polymeric, enhanced by a particle with a nanometersized dimension has expanded dramatically in recent years with a particular focus on materials with complex microstructure and nanostructure. Such composites rely on formation of a connected network of particles throughout the sample volume in order to enhance the polymer’s mechanical and electrical properties. From a fundamental perspective, this network formation will be governed by a percolation process within the constrained geometry of the particular microstructure. In this paper, the percolation process within a particular complex nanostructure, namely, a mat of electrospun nanofibers with fiber size of 100 nm and high porosity, is studied via continuum Monte Carlo simulations, where the sample geometry fiber and particle sizes, orientation, and sample porosity is matched to the mats utilized in our previous experimental work. A good agreement between experimental and computational results is observed. Simulations of spherical dopant in uniform samples, with zero, one, or two sample dimensions similar in size to the particle, were completed to explore the effects of confinement, in particular within a single fiber. These results were compared and contrasted with those from porous fibrous mats to determine the influence of porosity on the critical volume fraction. The results indicate that percolation in fibrous mats occurs via pathways that include sections of many fibers rather than being contained within single fibers which span the sample. The detailed dependence of critical volume fraction on porosity and the sensitivity to fiber number and width is discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hydration energy of Adenine, Guanine, Cytosine and Thymine : Monte Carlo simulation

The hydration of biomolecules is vitally important in molecular biology, so in this paper thesolvation energy and radial distribution function of DNA bases have been calculated by theMonte Carlo simulation.The geometries of isolated Adenine, Guanine, Cytosine, and Thyminehave been optimized using 6-31+G(d,p) basis function sets. These geometries then will be used inthe Monte Carlo calculation o...

متن کامل

Megavoltage dose enhancement of gold nanoparticles for different geometric set-ups: Measurements and Monte Carlo simulation

Background: Gold nanoparticles (GNPs) have been shown as a good radiosensitizer. In combination with radiotherapy, several studies with orthovoltage X-rays have shown considerable dose enhancement effects. This paper reports the dose enhancement factor (DEF) due to GNPs in 18 megavoltage (MV) beams. Materials and Methods: Different geometrical 50-nm GNPs configurations at a concentrati...

متن کامل

Monte Carlo Simulation of a Linear Accelerator and Electron Beam Parameters Used in Radiotherapy

Introduction: In recent decades, several Monte Carlo codes have been introduced for research and medical applications. These methods provide both accurate and detailed calculation of particle transport from linear accelerators. The main drawback of Monte Carlo techniques is the extremely long computing time that is required in order to obtain a dose distribution with good statistical accuracy. ...

متن کامل

Finite-Size Scaling Features of Electric Conductivity Percolation in Nanocomposites

Using conductive nanocomposites for bipolar plates in fuel cells can improve their performance. Percolation is the mechanism for nanocomposite conductivity. When the volume fraction of fillers in a composite material reaches a critical value, percolation starts to happen. If the composite material has an infinitesize, the probability of conductivity jumps from zero to 100% at the critical volum...

متن کامل

Phonon Transport and Thermal Conductivity Percolation in Random Nanoparticle Composites

In this paper, we investigated the effective thermal conductivity of three dimensional nanocomposites composed of randomly distributed binary nanoparticles with large differences (contrast ratio) in their intrinsic (bulk) thermal conductivity. When random composites are made from particles with very different thermal conductivity (large contrast ratio), a continuous phase of high thermal conduc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008